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Talk Outline

l Goals of the Paradise project

l Project Overview

l 1995 Activities & Current Status

l 1996 Plans
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Goals of the Paradise Project

l Implement a DBMS capable of storing and 
processing massive geographic data sets 
including maps and satellite images

l DBMS for all data, not just the metadata 

l Leverage ARPA-funded Gamma (parallel) and 
SHORE (object-oriented) DBMS  technology

l Integrated supported for tertiary storage

l Target application:  EOSDIS



4

Paradise Features

l Speed
– innovative processing algorithms, storage structures, and 

parallelism

l Ease of use
– declarative query language plus HDF support

l Scalability
– uses scalable multiprocessor platforms and support for 

tertiary storage devices

l Data Integrity 
– full concurrency control and recovery services
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Paradise Data Model

l Object-relational data model

l Attributes of a tuple can be instances of:

– standard base types 
l int, float, string, ...

– predefined GIS-specific ADTs:  
l point 
l polyline
l polygon 

– HDF-specific ADTs:
l 2 dimensional raster (8, 16, or 24 bit)
l n-dimensional arrays (1 unlimited dimension)

– video (mpeg)
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Query Example

CloudCover (date: date, cloudDensity:  raster16)

Cities (name: string, boundary: polygon, population: int)

Select name, cloudDensity.clip(boundary) 
    from Cities, CloudCover
    where date = “9/15/94” and 

boundary.area() > 900 and
    cloudDensity.clip(boundary).average() > 10
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1995 Activities

l HDF support (Kristin)

l Tertiary storage integration (JieBing)

l Parallelization (Biswadeep and Wei)

l Ports and bug fixes (Nirapuma, Kathik, Roger)
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l The NASA 500 don’t grok SQL 

l What is HDF?

– File format for storing scientific data sets
l Vdata (i.e. a table or a relation)

l 8 bit raster image with optional color palette
l 24 bit raster image
l multidimensional array (with 1 unlimited dimension)
l scale data, Vgroup (like a directory)

– Library interface for working with data
l read a hyperslab of a multidimensional array
l “copy out” interface

– Reprocessing algorithms written against this interface

Why HDF??
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Adding HDF Support to Paradise

l Goal:  provide HDF link-compatible interface

l Approach:

– added a new ADT for each HDF data type (e.g. 
raster, array, ...)

– metadata stored as normal relational attributes

– use auxiliary “system” tables for HDF information 
that doesn’t map cleanly to relational data model

– replace lower-layer of HDF library with calls to 
Paradise
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Paradise HDF Architecture
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Mosaic/HDF with Paradise
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Collage with Paradise

 

Queries

Paradise 
SQL

Paradise 

Objects

Client Process

Collage

HDF API Library

Paradise HDF Libary

Paradise ADTs

R
P
C

Shore Storage Manager

Scheduler

Extent Mgr.

Catalog Manager

Tuple Mgr.

Query
Optimizer

Paradise  ADTs

R
P
C

Paradise Server



13

l Why is HDF on Paradise better?

– HDF files limited by OS maximum file size

– Paradise implementation provides chunking and 
compression of raster images and arrays

– Integrated support for tertiary storage

– Improved performance via declustering across 
multiple processors and/or storage devices

– Can mix SQL with HDF calls

– Can replace multiple HDF calls with one SQL call

So What?
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Compress Tiles

Original 2D Raster

Break into tiles and add 
map table

HDF Raster Implementation
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Adding Tertiary Storage to Paradise

l Two Approaches:
– External

l “File” level migration (EMASS, Unitree)
l BIG Iron 
l Application does the integration

– Integrated
l Tape becomes just another level in DBMS storage hierarchy
l Totally transparent to application
l Query optimizer can minimize expensive tape seeks
l Opportunity for “query batching”
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Tertiary Storage Implementation

Paradise

File Mgr Object Mgr

Buffer Mgr

Disk I/O
Mgr

Tape I/O
Mgr

Shore Storage
Manager

Buffer Pool

Tape Block 
Buffer Pool

Tape Block 
Cache

Tape Volume
Disk Volumes



17

Tertiary Storage Details

l Tape and disk volumes look the same to the upper 
levels of the system

l Tape volume manager implements:
– a “log structured” file system on the tape media
– disk cache for recently accessed tape blocks
– mount/dismount functions for tape robot

l Tape blocks are “big” - typically 512 Kbytes

l Query optimizer and tape volume manager 
reorganizes tape accesses to minimizes seeks
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Preliminary Tape Performance

Sequoia Query #9:
select polygon.shape, raster.data.clip(polygon.shape)
from   polygon, raster
where  (polygon.landuse  = 92 or polygon.landuse = 91)
and    raster.freq  = 5 and  raster.time = 1
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Parallelization

l Exploit technology developed as part of Gamma 
project

l Scalable data archive
– desk top to mini-DAAC to full DAAC
– “shared-nothing” design

l Commodity hardware
– clusters of PCs connected via fast ethernet or ATM

l Eliminate need for network attached storage
– use of commodity tertiary storage devices such as 

Quantum mini-robot (7 tapes @ 40 GB/tape @ 3 MB/
second @ $10K)
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l Scalable almost w/o limits

l Commercial examples: Teradata,  NCR 3600,  IBM SP2

l With ATM and fast Ethernet “roll your own” by connecting 
commodity workstations
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CloudCover (inst: string, date: date, density:  raster)

Declustering Big Rasters/Arrays
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Parallelization Status

l Changes/additions required:
– code rewrite to do pipelining of tuples between 

operators
– split/merge streams
– scheduler and declustering mechanisms
– lots of work and except for rasters/arrays and polygons, 

no new technology

l Almost working!
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Ports and Releases

l Ports to SGI, Solaris (PC and Sparc), & Linux 
completed

l Ports to NT underway (server working)

l AIX port for SP2 underway

l Releases to Goodard,  CMU, SAIC, Univ. of Florida, 
others
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1996 Plans

l Finish parallelism including rasters/arrays and 
polygons

l Continue query optimization for queries against 
tertiary storage

l Netscape front-end with Java
l Benchmarks

– HDF on Paradise vs. HDF on file system
– Queries on Tape
– “National Level” Sequoia benchmark 

l Wider distribution of code releases


